PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of narLink to Publisher's site
 
Nucleic Acids Res. 1996 October 1; 24(19): 3829–3835.
PMCID: PMC146163

Structure, tissue distribution and genomic organization of the murine RRM-type RNA binding proteins TIA-1 and TIAR.

Abstract

TIA-1 and TIAR are RNA binding proteins of the RNA recognition motif (RRM)/ribonucleoprotein (RNP) family that have been implicated as effectors of apoptotic cell death. We report the structures of murine TIA-1 and TIAR (mTIA-1 and mTIAR) deduced from cDNA cloning, the mRNA and protein tissue distribution of mTIA-1 and mTIAR, and the exon-intron structures of the mTIA-1 and mTIAR genes. Both mTIA-1 and mTIAR are comprised of three approximately 100 amino acid N-terminal RRM domains and a approximately 90 amino acid C-terminal auxiliary domain. This subfamily of RRM proteins is evolutionarily well conserved; mTIA-1 and mTIAR are 80% similar to each other, and 96 and 99% similar to hTIA-1 and hTIAR, respectively. The overall exon-intron structures of the mTIA-1 and mTIAR genes are also similar to each other, as well as to the human TIA-1 gene structure. While Northern blot analysis reveals that mTIA-1 and mTIAR mRNAs have a broad tissue distribution, mTIA-1 and mTIAR proteins are predominantly expressed in brain, testis and spleen. At least two isoforms of both mTIA-1 and mTIAR are generated by alternative splicing. Murine TIA-1 isoforms including or lacking the exon 5 encoded sequences are expressed at a ratio of approximately 1:1, whereas mTIAR isoforms including or lacking the 5'-end of exon 3 sequences are expressed in a approximately 1:6 ratio. Molecular characterization of murine TIA-1 and TIAR RNA binding proteins provides the basis for a genetic analysis of the functional roles of these proteins during mammalian development.

Full Text

The Full Text of this article is available as a PDF (210K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Burd CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. [PubMed]
  • Kenan DJ, Query CC, Keene JD. RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci. 1991 Jun;16(6):214–220. [PubMed]
  • Mattaj IW. RNA recognition: a family matter? Cell. 1993 Jun 4;73(5):837–840. [PubMed]
  • Nagai K, Oubridge C, Ito N, Avis J, Evans P. The RNP domain: a sequence-specific RNA-binding domain involved in processing and transport of RNA. Trends Biochem Sci. 1995 Jun;20(6):235–240. [PubMed]
  • Baker BS. Sex in flies: the splice of life. Nature. 1989 Aug 17;340(6234):521–524. [PubMed]
  • Kelley RL. Initial organization of the Drosophila dorsoventral axis depends on an RNA-binding protein encoded by the squid gene. Genes Dev. 1993 Jun;7(6):948–960. [PubMed]
  • Matunis EL, Kelley R, Dreyfuss G. Essential role for a heterogeneous nuclear ribonucleoprotein (hnRNP) in oogenesis: hrp40 is absent from the germ line in the dorsoventral mutant squid. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2781–2784. [PubMed]
  • Lantz V, Chang JS, Horabin JI, Bopp D, Schedl P. The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev. 1994 Mar 1;8(5):598–613. [PubMed]
  • Christerson LB, McKearin DM. orb is required for anteroposterior and dorsoventral patterning during Drosophila oogenesis. Genes Dev. 1994 Mar 1;8(5):614–628. [PubMed]
  • Yao KM, Samson ML, Reeves R, White K. Gene elav of Drosophila melanogaster: a prototype for neuronal-specific RNA binding protein gene family that is conserved in flies and humans. J Neurobiol. 1993 Jun;24(6):723–739. [PubMed]
  • Ma K, Inglis JD, Sharkey A, Bickmore WA, Hill RE, Prosser EJ, Speed RM, Thomson EJ, Jobling M, Taylor K, et al. A Y chromosome gene family with RNA-binding protein homology: candidates for the azoospermia factor AZF controlling human spermatogenesis. Cell. 1993 Dec 31;75(7):1287–1295. [PubMed]
  • Reijo R, Lee TY, Salo P, Alagappan R, Brown LG, Rosenberg M, Rozen S, Jaffe T, Straus D, Hovatta O, et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet. 1995 Aug;10(4):383–393. [PubMed]
  • Tian Q, Streuli M, Saito H, Schlossman SF, Anderson P. A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell. 1991 Nov 1;67(3):629–639. [PubMed]
  • Kawakami A, Tian Q, Duan X, Streuli M, Schlossman SF, Anderson P. Identification and functional characterization of a TIA-1-related nucleolysin. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8681–8685. [PubMed]
  • Dember LM, Kim ND, Liu KQ, Anderson P. Individual RNA recognition motifs of TIA-1 and TIAR have different RNA binding specificities. J Biol Chem. 1996 Feb 2;271(5):2783–2788. [PubMed]
  • Brand S, Bourbon HM. The developmentally-regulated Drosophila gene rox8 encodes an RRM-type RNA binding protein structurally related to human TIA-1-type nucleolysins. Nucleic Acids Res. 1993 Aug 11;21(16):3699–3704. [PMC free article] [PubMed]
  • Wilson R, Ainscough R, Anderson K, Baynes C, Berks M, Bonfield J, Burton J, Connell M, Copsey T, Cooper J, et al. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. [PubMed]
  • Taupin JL, Tian Q, Kedersha N, Robertson M, Anderson P. The RNA-binding protein TIAR is translocated from the nucleus to the cytoplasm during Fas-mediated apoptotic cell death. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1629–1633. [PubMed]
  • Tian Q, Taupin J, Elledge S, Robertson M, Anderson P. Fas-activated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis. J Exp Med. 1995 Sep 1;182(3):865–874. [PMC free article] [PubMed]
  • Elledge SJ, Mulligan JT, Ramer SW, Spottswood M, Davis RW. Lambda YES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1731–1735. [PubMed]
  • Hall LR, Streuli M, Schlossman SF, Saito H. Complete exon-intron organization of the human leukocyte common antigen (CD45) gene. J Immunol. 1988 Oct 15;141(8):2781–2787. [PubMed]
  • Kawakami A, Tian Q, Streuli M, Poe M, Edelhoff S, Disteche CM, Anderson P. Intron-exon organization and chromosomal localization of the human TIA-1 gene. J Immunol. 1994 May 15;152(10):4937–4945. [PubMed]
  • Takebe Y, Seiki M, Fujisawa J, Hoy P, Yokota K, Arai K, Yoshida M, Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. [PMC free article] [PubMed]
  • Bonthron DT, Handin RI, Kaufman RJ, Wasley LC, Orr EC, Mitsock LM, Ewenstein B, Loscalzo J, Ginsburg D, Orkin SH. Structure of pre-pro-von Willebrand factor and its expression in heterologous cells. Nature. 1986 Nov 20;324(6094):270–273. [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Han JR, Yiu GK, Hecht NB. Testis/brain RNA-binding protein attaches translationally repressed and transported mRNAs to microtubules. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9550–9554. [PubMed]
  • Kajita Y, Nakayama J, Aizawa M, Ishikawa F. The UUAG-specific RNA binding protein, heterogeneous nuclear ribonucleoprotein D0. Common modular structure and binding properties of the 2xRBD-Gly family. J Biol Chem. 1995 Sep 22;270(38):22167–22175. [PubMed]
  • Oubridge C, Ito N, Evans PR, Teo CH, Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994 Dec 1;372(6505):432–438. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press