PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of narLink to Publisher's site
 
Nucleic Acids Res. 1996 July 15; 24(14): 2760–2766.
PMCID: PMC146015

Cloning and analysis of the genes encoding the type IIS restriction-modification system HphI from Haemophilus parahaemolyticus.

Abstract

The genomic region encoding the type IIS restriction-modification (R-M) system HphI (enzymes recognizing the asymmetric sequence 5'-GGTGA-3'/5'-TCACC-3') from Haemophilus parahaemolyticus were cloned into Escherichia coli and sequenced. Sequence analysis of the R-M HphI system revealed three adjacent genes aligned in the same orientation: a cytosine 5 methyltransferase (gene hphIMC), an adenine N6 methyltransferase (hphIMA) and the HphI restriction endonuclease (gene hphIR). Either methyltransferase is capable of protecting plasmid DNA in vivo against the action of the cognate restriction endonuclease. hphIMA methylation renders plasmid DNA resistant to R.Hindill at overlapping sites, suggesting that the adenine methyltransferase modifies the 3'-terminal A residue on the GGTGA strand. Strong homology was found between the N-terminal part of the m6A methyltransferasease and an unidentified reading frame interrupted by an incomplete gaIE gene of Neisseria meningitidis. The HphI R-M genes are flanked by a copy of a 56 bp direct nucleotide repeat on each side. Similar sequences have also been identified in the non-coding regions of H.influenzae Rd DNA. Possible involvement of the repeat sequences in the mobility of the HphI R-M system is discussed.

Full Text

The Full Text of this article is available as a PDF (119K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Roberts RJ, Macelis D. REBASE--restriction enzymes and methylases. Nucleic Acids Res. 1994 Sep;22(17):3628–3639. [PMC free article] [PubMed]
  • Szybalski W, Kim SC, Hasan N, Podhajska AJ. Class-IIS restriction enzymes--a review. Gene. 1991 Apr;100:13–26. [PubMed]
  • Li L, Wu LP, Chandrasegaran S. Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4275–4279. [PubMed]
  • Aggarwal AK. Structure and function of restriction endonucleases. Curr Opin Struct Biol. 1995 Feb;5(1):11–19. [PubMed]
  • Looney MC, Moran LS, Jack WE, Feehery GR, Benner JS, Slatko BE, Wilson GG. Nucleotide sequence of the FokI restriction-modification system: separate strand-specificity domains in the methyltransferase. Gene. 1989 Aug 15;80(2):193–208. [PubMed]
  • Bocklage H, Heeger K, Müller-Hill B. Cloning and characterization of the MboII restriction-modification system. Nucleic Acids Res. 1991 Mar 11;19(5):1007–1013. [PMC free article] [PubMed]
  • Kita K, Suisha M, Kotani H, Yanase H, Kato N. Cloning and sequence analysis of the StsI restriction-modification gene: presence of homology to FokI restriction-modification enzymes. Nucleic Acids Res. 1992 Aug 25;20(16):4167–4172. [PMC free article] [PubMed]
  • Kleid D, Humayun Z, Jeffrey A, Ptashne M. Novel properties of a restriction endonuclease isolated from Haemophilus parahaemolyticus. Proc Natl Acad Sci U S A. 1976 Feb;73(2):293–297. [PubMed]
  • Kleid DG. Purification and properties of the HphI endonuclease. Methods Enzymol. 1980;65(1):163–166. [PubMed]
  • McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 1994 Sep;22(17):3640–3659. [PMC free article] [PubMed]
  • Ianulaitis AA, Stakenas PS, Piatrushite MP, Bitinaite Iu B, Klimashauskas SI. Izuchenie spetsifichnosti novykh restriktaz i metilaz. Neobychnaia modifikatsiia tsitozina po 4-mu polozheniiu. Mol Biol (Mosk) 1984 Jan-Feb;18(1):115–129. [PubMed]
  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. [PubMed]
  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed]
  • Covarrubias L, Bolivar F. Construction and characterization of new cloning vehicles. VI. Plasmid pBR329, a new derivative of pBR328 lacking the 482-base-pair inverted duplication. Gene. 1982 Jan;17(1):79–89. [PubMed]
  • Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. [PubMed]
  • Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. [PMC free article] [PubMed]
  • Lubys A, Menkevicius S, Timinskas A, Butkus V, Janulaitis A. Cloning and analysis of translational control for genes encoding the Cfr9I restriction-modification system. Gene. 1994 Apr 8;141(1):85–89. [PubMed]
  • Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. [PMC free article] [PubMed]
  • Marko MA, Chipperfield R, Birnboim HC. A procedure for the large-scale isolation of highly purified plasmid DNA using alkaline extraction and binding to glass powder. Anal Biochem. 1982 Apr;121(2):382–387. [PubMed]
  • Mann MB, Rao RN, Smith HO. Cloning of restriction and modification genes in E. coli: the HbaII system from Haemophilus haemolyticus. Gene. 1978 Apr;3(2):97–112. [PubMed]
  • Whitehead PR, Brown NL. A simple and rapid method for screening bacteria for type II restriction endonucleases: enzymes in Aphanothece halophytica. Arch Microbiol. 1985 Feb;141(1):70–74. [PubMed]
  • Chen EY, Seeburg PH. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. [PubMed]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. [PubMed]
  • O'Connor CD, Humphreys GO. Expression of the Eco RI restriction-modification system and the construction of positive-selection cloning vectors. Gene. 1982 Dec;20(2):219–229. [PubMed]
  • Kuhn I, Stephenson FH, Boyer HW, Greene PJ. Positive-selection vectors utilizing lethality of the EcoRI endonuclease. Gene. 1986;42(3):253–263. [PubMed]
  • Szomolányi E, Kiss A, Venetianer P. Cloning the modification methylase gene of Bacillus sphaericus R in Escherichia coli. Gene. 1980 Aug;10(3):219–225. [PubMed]
  • Timinskas A, Butkus V, Janulaitis A. Sequence motifs characteristic for DNA [cytosine-N4] and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases. Gene. 1995 May 19;157(1-2):3–11. [PubMed]
  • Pósfai J, Bhagwat AS, Pósfai G, Roberts RJ. Predictive motifs derived from cytosine methyltransferases. Nucleic Acids Res. 1989 Apr 11;17(7):2421–2435. [PMC free article] [PubMed]
  • Wilson GG, Murray NE. Restriction and modification systems. Annu Rev Genet. 1991;25:585–627. [PubMed]
  • Withers BE, Ambroso LA, Dunbar JC. Structure and evolution of the XcyI restriction-modification system. Nucleic Acids Res. 1992 Dec 11;20(23):6267–6273. [PMC free article] [PubMed]
  • Hall RM, Collis CM. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol. 1995 Feb;15(4):593–600. [PubMed]
  • Shen P, Huang HV. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics. 1986 Mar;112(3):441–457. [PubMed]
  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. [PubMed]
  • Sznyter LA, Slatko B, Moran L, O'Donnell KH, Brooks JE. Nucleotide sequence of the DdeI restriction-modification system and characterization of the methylase protein. Nucleic Acids Res. 1987 Oct 26;15(20):8249–8266. [PMC free article] [PubMed]
  • Karreman C, de Waard A. Agmenellum quadruplicatum M.AquI, a novel modification methylase. J Bacteriol. 1990 Jan;172(1):266–272. [PMC free article] [PubMed]
  • Jennings MP, van der Ley P, Wilks KE, Maskell DJ, Poolman JT, Moxon ER. Cloning and molecular analysis of the galE gene of Neisseria meningitidis and its role in lipopolysaccharide biosynthesis. Mol Microbiol. 1993 Oct;10(2):361–369. [PubMed]
  • Hammerschmidt S, Birkholz C, Zähringer U, Robertson BD, van Putten J, Ebeling O, Frosch M. Contribution of genes from the capsule gene complex (cps) to lipooligosaccharide biosynthesis and serum resistance in Neisseria meningitidis. Mol Microbiol. 1994 Mar;11(5):885–896. [PubMed]
  • Sarubbi E, Rudd KE, Xiao H, Ikehara K, Kalman M, Cashel M. Characterization of the spoT gene of Escherichia coli. J Biol Chem. 1989 Sep 5;264(25):15074–15082. [PubMed]
  • Nwankwo DO, Moran LS, Slatko BE, Waite-Rees PA, Dorner LF, Benner JS, Wilson GG. Cloning, analysis and expression of the HindIII R-M-encoding genes. Gene. 1994 Dec 2;150(1):75–80. [PubMed]
  • Kulakauskas S, Barsomian JM, Lubys A, Roberts RJ, Wilson GG. Organization and sequence of the HpaII restriction-modification system and adjacent genes. Gene. 1994 May 3;142(1):9–15. [PubMed]
  • Sugisaki H, Yamamoto K, Takanami M. The HgaI restriction-modification system contains two cytosine methylase genes responsible for modification of different DNA strands. J Biol Chem. 1991 Jul 25;266(21):13952–13957. [PubMed]
  • Bitinaite J, Maneliene Z, Menkevicius S, Klimasauskas S, Butkus V, Janulaitis A. Alw26I, Eco31I and Esp3I--type IIs methyltransferases modifying cytosine and adenine in complementary strands of the target DNA. Nucleic Acids Res. 1992 Oct 11;20(19):4981–4985. [PMC free article] [PubMed]
  • Balbás P, Soberón X, Merino E, Zurita M, Lomeli H, Valle F, Flores N, Bolivar F. Plasmid vector pBR322 and its special-purpose derivatives--a review. Gene. 1986;50(1-3):3–40. [PubMed]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press