PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of aemPermissionsJournals.ASM.orgJournalAEM ArticleJournal InfoAuthorsReviewers
 
Appl Environ Microbiol. Jul 1996; 62(7): 2489–2493.
PMCID: PMC1388896
Microbial Utilization of Estuarine Dissolved Organic Carbon: a Stable Isotope Tracer Approach Tested by Mass Balance
M. Hullar, B. Fry, B. J. Peterson, and R. T. Wright
Abstract
The natural stable isotope values of different plants have been used to trace the fate of organic carbon that enters estuarine ecosystems. Experiments were designed to determine the magnitude of (delta) (sup13)C changes of dissolved organic carbon (DOC) derived from tidal marsh vegetation that occurred during bacterial decomposition. Bacteria were grown on DOC leached from estuarine Spartina alterniflora and Typhus angustifolia plants. In four experiments, 25 to 80% of the initial carbon (2.6 to 9.1 mM organic C) was converted to bacterial biomass and CO(inf2). Mass balance calculations showed good recovery of total C and (sup13)C at the end of these experiments (100% (plusmn) 14% total C; (plusmn) 1(permil) (delta) (sup13)C). The (delta) (sup13)C values of DOC, bacterial biomass, and respired CO(inf2) changed only slightly in the four experiments by average values of -0.6, +1.4, and +0.5(permil), respectively. These changes are small relative to the range of (delta) (sup13)C values represented by different organic carbon sources to estuaries. Thus, microbial (delta) (sup13)C values determined in the field helped to identify the source of the carbon assimilated by bacteria.
Articles from Applied and Environmental Microbiology are provided here courtesy of
American Society for Microbiology (ASM)