A comparison of the effects of simvastatin and pravastatin monotherapy on muscle histology and permeability in hypercholesterolaemic patients

J. CONTERMANS1, J. W. A. SMIT1, P. R. BÄR2 & D. W. ERKELENS
Departments of 1Internal Medicine and 2Neurology, University Hospital Utrecht, Utrecht, The Netherlands

1 In this double-blind, placebo controlled, prospective study, it was assessed whether simvastatin or pravastatin monotherapy have adverse effects on muscle histology and muscle membrane permeability in hypercholesterolaemic patients.

2 Twenty-four patients, seven females and 17 males, with primary hypercholesterolaemia (LDL cholesterol levels ≥4.14 mmol l⁻¹) were selected from the outpatient lipid clinic of a 650 bed academic medical centre.

3 After a 6-week lipid lowering diet and placebo period, patients were randomized into two groups of 12 subjects with similar characteristics, to receive either simvastatin or pravastatin in dosages of 10–40 mg day⁻¹ for three periods of 6 weeks. After each 3-week period the dose was adjusted to LDL cholesterol to aim for equipotent dosage.

4 All subjects performed a 45 min, lean body mass standardized bicycle ergometer test, before and after 18 weeks of treatment. As parameter for muscle damage, the exercise-induced rise of the muscle proteins, creatine kinase (CK) and myoglobin (Mb), relative to pre-exercise levels, were determined 1 and 8 h after the test. Forty-eight hours after each test a biopsy was taken from the quadriceps muscle and histology was judged by three independent observers.

5 Eighteen weeks of monotherapy with simvastatin and pravastatin did not affect the exercise induced release of CK and Mb, neither were any differences observed in muscle histology before and after treatment with either of the drugs.

6 Although simvastatin doses were lower than pravastatin, reductions in total- and LDL-cholesterol were greater in the simvastatin treated patients than in the pravastatin treated group.

7 We conclude that no evidence is found for muscle damage after 18 weeks of monotherapy with equipotent doses of either simvastatin or pravastatin.

Keywords hypercholesterolaemia simvastatin pravastatin myopathy creatine kinase myoglobin exercise muscle biopsy

Introduction

Inhibitors of the rate limiting enzyme in the cholesterol-synthesis, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, have gained an important place in the treatment of hypercholesterolaemia. Although these drugs have been proven relatively safe so far, adverse effects on skeletal muscles have been described, ranging from asymptomatic elevations of serum creatine kinase (CK) to severe rhabdomyolysis: Lovastatin is associated with elevations of CK serum levels without symptoms in 11% of the patients [1]. These CK elevations seem to be dose related and associated with physical exercise [1, 2]. Myopathy, defined as muscle tenderness combined with CK levels elevated more than 10 times the upper limit of normal (ULN), is reported in 0.1 to 0.2 percent of the patients treated with lovastatin [2–5].

Correspondence: Dr J. W. A. Smit, University Hospital Utrecht, Department of Internal Medicine, Room F.02.126, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
When lovastatin is combined with gemfibrozil, the incidence of myopathy is 5–30% [6–9]. Rhabdomyolysis has been reported in combinations of lovastatin with erythromycin, niacin or cyclosporin [3,10–13]. Simvastatin, a more powerful HMG-CoA reductase inhibitor than lovastatin, is associated with elevations of CK and myopathy as well [14–17]. Pravastatin, which has been claimed to cause less adverse reactions due to its hydrophilicity, has nevertheless also been associated with elevations of CK and myopathy [18,19]. Since treatment with these drugs should be continued lifelong, it is important to study the relation between HMG-CoA reductase inhibitors and muscle pathology and to see whether there are differences between two statins which differ in water/lipid solubility. In this study, muscle damage is determined by assessing the release of the muscle proteins CK and myoglobin (Mb) following a lean body mass (LBM) standardized exercise provocation test in 24 hypercholesterolaemic patients before and during treatment with simvastatin or pravastatin. This test is based on the fact that the exercise induced release of CK and Mb is more pronounced in subjects with (subclinical) muscular pathology than in normals [20–23]. Furthermore, muscle biopsies to detect histologic alterations under HMG-CoA reductase inhibition are obtained.

Methods

Patients

Twenty-four patients with primary hypercholesterolaemia, 17 men and seven women, age 51 ± 8 years, having low-density lipoprotein (LDL) cholesterol levels ≥4.65 mmol l\(^{-1}\) and triglycerides (TG) < 4.6 mmol l\(^{-1}\), were selected from recently diagnosed hypercholesterolaemic patients from the Lipid Clinic of the University Hospital Utrecht. Patients with diabetes mellitus, renal, hepatic, muscle or cardiac diseases were excluded. Diseases or drug-therapy, known to be accompanied with elevated CK or Mb levels were excluded as well. Before entering the study, informed consent was obtained from all patients.

Study protocol

The study protocol was approved by the Medical Ethics Committee of the University Hospital Utrecht. The patients entered a dietary baseline period of 6 weeks. They were instructed by a dietitian and consumed a standard lipid lowering diet containing 50% of calories from carbohydrates, 20% from proteins, 30% from fat with a polyunsaturated/saturated lipid ratio of 1. Daily intake of cholesterol was <300 mg. During this 6-week period, the patients received two placebo-tablets each evening; one resembling simvastatin 10 mg, the other resembling pravastatin 10 mg. At the end of the 6-week baseline period, total cholesterol (TC), high-density lipoprotein (HDL) cholesterol and TG levels were determined. LDL cholesterol was calculated using the Friedewald formula [24]. Patients with LDL cholesterol ≥4.14 mmol l\(^{-1}\) were randomized into two treatment groups; one to be treated with simvastatin, the other to be treated with pravastatin. The active treatment phase consisted of three successive periods of 6 weeks. At the end of each period, fasting lipid levels and safety parameters were measured. Patients were interviewed for tolerability and adverse events. A physical examination was performed after each treatment period. Dietary adherence was evaluated and a tablet count was performed to assess drug compliance. The attainment of an equipotent dosage regime of simvastatin or pravastatin was attempted in the following manner. In the simvastatin treatment group, patients were treated with 10 mg simvastatin in the evening and pravastatin placebo. In the pravastatin group, patients started with 10 mg pravastatin in the evening and simvastatin placebo. If at the end of the first 6-week treatment period LDL cholesterol was ≥3.4 mmol l\(^{-1}\), active medication doses (simvastatin or pravastatin) and placebo were doubled to 20 mg day\(^{-1}\). Using the same criterion after 12 weeks of treatment, active medication and placebo were doubled again, to a maximum of 40 mg day\(^{-1}\). If LDL cholesterol was <2.6 mmol l\(^{-1}\) after 6 or 12 weeks of treatment, doses of active medication and placebo were halved to a minimum dosage of 10 mg simvastatin or pravastatin/day.

Myopathy assessment

Ergometer test In the last week of the dietary baseline period and after 18 weeks of active treatment, an exercise provocation test was performed. The test was used before to detect carriers of Duchenne's muscular dystrophy [22,23]. This is a 45 min long exercise-performance test on a bicycle ergometer, load 2 watt kg\(^{-1}\) lean body mass (total body weight minus body fat content). Body fat content was estimated by measurement of biceps-, triceps-, subscapular- and suprailiac skin folds. Heart frequency was registered very 5 min and kept below the value calculated by 220 minus age in years. Work load was registered every 5 min and reduced if necessary. During the second exercise test (in the last week of the active treatment period), work load was kept identical to the work load during the first test for each individual. The patients were told to avoid strenuous exercise during 24 h before the test. Blood samples for CK and Mb analysis were taken before the exercise test as well as 1 and 8 h after the test. It was demonstrated before that peak CK levels occur 8 h after the test whereas peak Mb are observed 1 h after exercise [20–23,25]. The exercise induced muscle damage is reflected by the maximal rise in CK and Mb levels after exercise (i.e. the difference between post-exercise peak CK and Mb levels and pre-exercise levels) [20,22,23,25].

Muscle biopsy Forty-eight hours after both exercise tests, the patients underwent a muscle biopsy. After local anaesthesia with Marcaine\textsuperscript® 0.5%, a disposable
biopsy needle (Travenol Tru-Cut®, 14 Ga, 15.2 cm cannula, 20 mm specimen notch) was introduced in the
musculus quadriceps femoris, vastus lateralis, about 10 cm proximal of the upper patella margin [26]. This site was chosen, because in statin related
myopathy proximal muscles are affected. Myotoxic effects during treatment with HMG-CoA reductase
inhibitors are mostly seen in type 2 muscle fibres. The quadriceps muscle contains all types of muscle
fibres (1, 2a and 2b) in equal amounts and distributed equally [27]. Moreover, exercise load is heaviest
in the quadriceps muscle. After biopsy, an elastic bandage was applied for 12 h. The biopsies were embed-
ed in Lipshaw Embedding Medium® and frozen in isopentane cooled with liquid nitrogen. They were
kept at -75° C. Muscle biopsy sections were stained with haematoxylin and eosin. Biopsies in random
order were studied by three independent observers, who were blind to treatment modality. They classified
the biopsies as ‘normal, abnormal or indeterminable’. The final classification was the one given by at least
two of the three observers. A preparation was classified ‘abnormal’ when there were signs of white-
blood-cell infiltration, phagocytosis in the muscle tis-
sue or hypercontraction of muscle fibres. When the
amount of muscle tissue in the section was too small or there were too many artifacts to give proper judg-
ment, the classification ‘indeterminable’ was given.
From a number of patients, two sections from the
same biopsy specimen, were presented to the
observers. When the classification of these two
biopsies differed (e.g. one ‘normal’ and one ‘ab-
normal’) the ultimate classification was ‘indeter-
minable’.

Laboratory methods Plasma lipid levels were mea-
sured in plasma portions taken after 12 h overnight
fasting. TC and TG levels were determined by enzy-
matic-colorimetric methods (Boehringer Mannheim
CHOD-PAP and GPO-PAP®). HDL cholesterol was
determined in the supernatant after precipitation
of LDL and very low density (VLDL) cholesterol. Mb
was assessed using the Behring Nephelometer® and
the Behring NA Latex Myoglobin Kit®. Samples
from each subject were measured in duplicate in the
same assay run.

Statistical methods All values in this study are pre-
sent ed as mean ± standard deviation. Student’s t-test
was used to analyze lipid levels within and between
the two treatment groups and to compare mean drug
dosage, lean body mass and exercise load between
the two groups. Pre-exercise CK and Mb levels as
well as the exercise induced rise in CK and Mb were
compared between the first exercise test (without
treatment) and the second exercise test (during treat-
ment) within both of the treatment groups using the
Wilcoxon test for paired measures. Pre-exercise
levels of CK and Mb and post-exercise rise of these
proteins were compared between the simvastatin
and pravastatin group for both of the exercise tests
using the Mann-Whitney test. Chi-square testing
was performed to compare gender between the two
groups and to compare the qualifications of the
muscle biopsies taken after the first and second
exercise tests within and between both treatment
groups. Inter-observer consistency in muscle biopsy
observers was analysed by k-statistics [28]. In all
tests a P value of less than 0.05 was considered
significant.

Results

Two patients could not be analysed of the 24 patients
who entered the study. One patient in the simvastatin
group could not perform the second ergometer test
because of angina pectoris, the other patient discon-
tinued the study for personal reasons, unrelated to the
drug used. The pravastatin and simvastatin treatment
groups at the end of the baseline period were identi-
cal with regards to age, gender and lipid parameters
(Table 1). Results of the first exercise test, before

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Similar characteristics of the simvastatin and pravastatin treatment groups at the end of the baseline period (values expressed as mean ± s.d.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simvastatin group</td>
<td>Pravastatin group</td>
</tr>
<tr>
<td>Number of patients</td>
<td>12</td>
</tr>
<tr>
<td>Sex (males/females)</td>
<td>7/4</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>49.6 ± 7.6</td>
</tr>
<tr>
<td>Total cholesterol (mmol l⁻¹)</td>
<td>7.84 ± 0.87</td>
</tr>
<tr>
<td>LDL-cholesterol (mmol l⁻¹)</td>
<td>6.00 ± 0.85</td>
</tr>
<tr>
<td>HDL-cholesterol (mmol l⁻¹)</td>
<td>1.10 ± 0.27</td>
</tr>
<tr>
<td>Triglycerides (mmol l⁻¹)</td>
<td>1.66 ± 0.59</td>
</tr>
</tbody>
</table>

Ergometer test

| Lean body mass (LBM, kg) | 51.0 ± 8.2 | 54.0 ± 8.8* |
| Mean workload (watt kg⁻¹ LBM) | 1.9 ± 0.2 | 21. ± 0.3* |

*P > 0.05, Chi-square test.
*P > 0.05, Student’s t-test.
treatment, did not differ with regards to lean body mass, workload (Table 1), absolute pre-exercise CK and Mb levels, rise of CK and Mb levels, 1 and 8 h after the first exercise test (Table 3) and muscle histology (Table 4). Therefore both treatment groups had similar characteristics before treatment was started. Because dosage was dependent on serum LDL cholesterol levels at 6 and 12 weeks of treatment, patients within one treatment group (simvastatin or pravastatin) received different doses of active medication (Table 2). Mean dosages of active medication per patient, however, did not differ between the two groups.

Lipid parameters

Lipid concentrations at the end of the baseline period and the end of the last 6-week treatment periods are given in Table 2. In both groups, significant reductions in TC and LDL cholesterol compared with baseline levels were achieved; 30.4% and 44.5% respectively, for the simvastatin group, 21.0% and 33.7% for the pravastatin group. HDL cholesterol levels at the end of the third treatment period rose by 17.3% in the simvastatin and 22.6% in the pravastatin group. TG levels did not differ from baseline levels in both groups. TC and LDL cholesterol levels at the end of the third treatment period differed between the two treatment groups: simvastatin therapy resulted in greater reductions in LDL cholesterol than pravastatin therapy.

Myopathy assessment

Exercise provocation test The two treatment groups did not differ in lean body mass and mean workload (Table 1). All patients had the same workload at any point of time during the second exercise test as during the first one. Pre-exercise absolute CK and Mb levels and exercise induced rise in CK and Mb, determined 1 and 8 h after exercise, are given in Table 3. Maximal rises in CK and Mb were observed 8 resp 1 h after all tests. Absolute pre-exercise CK levels did not differ between the baseline exercise test and the second exercise test within either of the treatment groups, neither did the rise in CK levels, 1 and 8 h after exercise. Three subjects (nos 3, 4 and 7) in the simvastatin and one subject (no. 9) in the pravastatin group had elevated pre-exercise CK levels before the first test. CK levels before the second exercise test were elevated in these subjects as well, except in no. 3 of the simvastatin group. It was verified that these subjects had not experienced physical exercise before both tests. No differences in pre-exercise Mb levels between the first and second exercise test were observed, within both of the treatment groups and the same was true for the post-exercise rise in Mb levels, 1 and 8 h after exercise. Subject 5 in the simvastatin group had an impressive rise in Mb after the first exercise test. Leaving out subjects 3 and 5 in the simvastatin group did not induce differences between first and second exercise test. No differences between the simvastatin and pravastatin group were observed in pre-exercise CK and Mb levels and post-exercise rise of these proteins for both of the exercise tests.

Muscle biopsies Muscle biopsy was not successful in two patients at the end of the baseline period, one in the simvastatin and one in the pravastatin treatment groups. The results of the other muscle biopsies are given in Table 4. Agreement between the observers was fair to moderate/ substantial [28]. No differences in muscle histology were found, between the two series of biopsies, within either treatment group and between the two groups for both tests. Three muscle biopsies at the end of the placebo period and four after active treatment were classified

Table 2 Lipid parameters in two groups of 11 hypercholesterolaemic patients before and during treatment with equipotent doses of simvastatin or pravastatin (all values expressed as mean ± s.d., lipids in mmol l⁻¹, dose in mg)

<table>
<thead>
<tr>
<th>Simvastatin</th>
<th>Baseline</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>Percentual decrease vs baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>7.84 ± 0.87</td>
<td>5.77 ± 0.74</td>
<td>5.77 ± 0.97</td>
<td>5.46 ± 0.60</td>
<td>(-30.4)²*</td>
</tr>
<tr>
<td>LDL</td>
<td>6.00 ± 0.85</td>
<td>3.81 ± 0.86</td>
<td>3.52 ± 0.77</td>
<td>3.33 ± 0.49</td>
<td>(-44.5)²*</td>
</tr>
<tr>
<td>HDL</td>
<td>1.10 ± 0.27</td>
<td>1.12 ± 0.30</td>
<td>1.20 ± 0.34</td>
<td>1.29 ± 0.28</td>
<td>(+17.3)*</td>
</tr>
<tr>
<td>TG</td>
<td>1.66 ± 0.59</td>
<td>1.72 ± 0.82</td>
<td>1.71 ± 0.97</td>
<td>1.83 ± 0.89</td>
<td>(+10.3)</td>
</tr>
<tr>
<td>dose of drug</td>
<td>0.00 ± 0.00</td>
<td>10.00 ± 0.00²</td>
<td>17.27 ± 4.45²</td>
<td>28.28 ± 11.13²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pravastatin</th>
<th>Baseline</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>Percentual decrease vs baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>7.92 ± 1.08</td>
<td>6.21 ± 0.66</td>
<td>6.23 ± 0.77</td>
<td>6.26 ± 0.74</td>
<td>(-21.0)*</td>
</tr>
<tr>
<td>LDL</td>
<td>6.06 ± 1.13</td>
<td>4.55 ± 1.00</td>
<td>4.30 ± 0.83</td>
<td>4.02 ± 0.85</td>
<td>(-33.7)*</td>
</tr>
<tr>
<td>HDL</td>
<td>1.15 ± 0.12</td>
<td>1.13 ± 0.22</td>
<td>1.27 ± 0.16</td>
<td>1.41 ± 0.25</td>
<td>(+22.6)*</td>
</tr>
<tr>
<td>TG</td>
<td>1.50 ± 0.20</td>
<td>1.18 ± 0.85</td>
<td>1.45 ± 0.72</td>
<td>1.85 ± 1.18</td>
<td>(+23.3)</td>
</tr>
<tr>
<td>dose of drug</td>
<td>0.00 ± 0.00</td>
<td>10.00 ± 0.00</td>
<td>19.09 ± 2.87</td>
<td>35.45 ± 9.88</td>
<td></td>
</tr>
</tbody>
</table>

*P < 0.001 vs baseline value, Student's t-test.

*P < 0.01 vs pravastatin group, t-test.

*P > 0.05 vs pravastatin group, t-test.
Table 3 Rise of serum creatine kinase (CK) and myoglobin (Mb), 1 and 8 h after standardized exercise compared with baseline levels in two groups of 11 hypercholesterolaemic patients. The first exercise test was performed before treatment, the second test after 18 weeks of treatment with simvastatin or pravastatin.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>CK (u l⁻¹) Rise</th>
<th>Mb (ng dl⁻¹) Rise</th>
<th>CK (u l⁻¹) Rise</th>
<th>Mb (ng dl⁻¹) Rise</th>
<th>End dosage (mg day⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>Gender</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Simvastatin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>m</td>
<td>70</td>
<td>73</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>m</td>
<td>74</td>
<td>8</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>m</td>
<td>184</td>
<td>11</td>
<td>165</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
<td>180</td>
<td>17</td>
<td>114</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>m</td>
<td>63</td>
<td>37</td>
<td>119</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>m</td>
<td>44</td>
<td>11</td>
<td>33</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>m</td>
<td>126</td>
<td>0</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>39</td>
<td>3</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>f</td>
<td>64</td>
<td>6</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>f</td>
<td>83</td>
<td>5</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>52</td>
<td>2</td>
<td>-3</td>
<td>24</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>89.0¹</td>
<td>9.4¹</td>
<td>39.7¹</td>
<td>33.4¹</td>
</tr>
<tr>
<td>s.d.</td>
<td></td>
<td>49.1</td>
<td>9.9</td>
<td>50.3</td>
<td>15.4</td>
</tr>
<tr>
<td>Pravastatin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>m</td>
<td>34</td>
<td>41</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>m</td>
<td>41</td>
<td>1</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>m</td>
<td>52</td>
<td>0</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
<td>45</td>
<td>9</td>
<td>11</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>m</td>
<td>88</td>
<td>-2</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>m</td>
<td>71</td>
<td>6</td>
<td>66</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>m</td>
<td>80</td>
<td>1</td>
<td>-2</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>79</td>
<td>10</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>m</td>
<td>136</td>
<td>12</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>f</td>
<td>46</td>
<td>4</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>31</td>
<td>7</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>63.9¹</td>
<td>4.4¹</td>
<td>20.6¹</td>
<td>27.5¹</td>
</tr>
<tr>
<td>s.d.</td>
<td></td>
<td>29.6</td>
<td>4.5</td>
<td>20.4</td>
<td>8.9</td>
</tr>
</tbody>
</table>

*Values not included in calculations because of missing corresponding values.
¹P > 0.05 vs corresponding values during active treatment, Wilcoxon test.
²P > 0.05 vs corresponding values in pravastatin group, Mann-Whitney test.

‘abnormal’ in the pravastatin group. No patient had an abnormal histology after placebo and one after active treatment in the simvastatin group. There was no relation between absolute pre-exercise levels of CK or Mb or rise of muscle proteins after exercise and histologic classification.

Discussion

The goal of this study was to determine the relation between monotherapy with the HMG-CoA reductase inhibitors simvastatin and pravastatin and muscle pathology. Reust et al. studied CK levels after exercise in healthy volunteers on lovastatin and placebo and did not find any differences between the two groups [29]. In this study, we determined not only CK but Mb as well, since Mb is a more sensitive parameter for muscular pathology after exercise than CK [22, 23, 25, 30]. No differences between pre-exercise absolute CK and Mb and CK and Mb rises were found between the first and second exercise within both groups and between the simvastatin and pravastatin group. Taken the number of subjects participating in this study, the observed standard deviations in the exercise induced rise between first and second exercise test and a power of 0.8, it could be calculated that the differences in maximal CK rise (observed 8 h after exercise) between first and second exercise tests had to be 35 u l⁻¹ for the simvastatin group and 38 u l⁻¹ for the pravastatin group to reach significance. For Mb rise, 1 h after exercise, these levels were 45 ng dl⁻¹ for the simvastatin group and 22 ng dl⁻¹ for the pravastatin group. In studies on exercise induced muscle protein rise in subjects with subclinical muscle disease, differences in CK and Mb rise between subjects and healthy controls were observed beyond these significance thresholds, and although the pathogenesis of these diseases might differ from statin related myopathy, the number of subjects participating in the present study is sufficient to detect differences in CK and Mb rise that even fall below the values found in other diseases [2-5, 20, 21, 23]. It is striking that absolute pre-exercise CK levels before the first exercise test were elevated in some subjects. This could not be attributed to factors known to be accompanied by elevations of CK. One could wonder if hypercholesterolaemia in itself is associated with muscle damage [31]. We con-
to treatment with HMG-CoA reductase inhibitors. We have no explanation for the abnormal biopsies in three subjects before treatment with pravastatin. These patients did neither experience abnormal baseline muscle protein levels, nor pronounced exercise induced CK or Mb levels. There was no relation between the classifications of the biopsies in both groups and the muscle protein levels after the exercise tests. The possibility remains that if the biopsies had been taken at another point in time after the exercise test or from another muscle the results could have been different. It seems however very unlikely that muscular pathology after exercise would subside within 48 h or would be better detectable even later. Neither in the exercise induced release of CK and Mb, nor in histology did we find indications for statin induced muscle pathology. In young rats simvastatin but not pravastatin treatment results in myopathy and growth retardation [32]. Maybe susceptibility to statin induced myopathy is dependent on developmental stage. In adult humans treated with statins, CK elevations are reported but it is not clear if these are statin-related or pre-existent [31]. Apparently additional factors, interfering with statin metabolism and thereby increasing their systemic levels, are needed to elicit myopathy [3, 10–13, 33]. One could expect differences between pravastatin and simvastatin in adverse systemic effects, due to the fact that pravastatin is hydrophilic and simvastatin is not [18, 33]. These characteristics however were determined in vitro only and in assessing systemic adverse effects the influences of drug metabolism have to be taken into account: e.g. the hepatic extraction ratio of simvastatin is larger than that of pravastatin and metabolites of both drugs might or might not have systemic effects as well [35–38]. Indeed, it would be interesting to determine bound and unbound plasma levels of these drugs. The lipid lowering effects of the two drugs are in agreement with the literature [18, 35, 39]. In conclusion, we did not find evidence for muscular pathology after short-term (18 weeks) treatment with the HMG-CoA reductase inhibitors simvastatin or pravastatin, neither by studying the exercise induced release of CK and Mb, nor by histologic examination of muscle biopsies. The question whether long term treatment with HMG-CoA reductase inhibitors might reveal evidence for muscle damage remains to be studied.

The authors wish to express their gratitude to Dr J. H. Wokke, neurologist, Dr A. L. Bootma, histologist and J. Bredman for their evaluation of the muscle biopsies, to Dr T. W. A. de Bruin, director of the Lipid Research Laboratory of the University Hospital Utrecht for his review of the manuscript and to Dr H. A. Wijnne for his statistical advice.

References

(Received 4 August 1993, accepted 20 September 1994)