PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jathtrainLink to Publisher's site
 
J Athl Train. 2000 Jan-Mar; 35(1): 38–43.
PMCID: PMC1323436

Effects of High-Top and Low-Top Shoes on Ankle Inversion

Mark D. Ricard, PhD,* Shane S. Schulties, PhD, PT, ATC,* and Jose J. Saret, MS, ATC

Abstract

Objective:

To determine the differences in the rate and amount of ankle inversion in subjects wearing high-top and low-top shoes.

Design and Setting:

Subjects were filmed at 60 Hz while on an inversion platform that suddenly inverted the right ankle 35°. We measured 5 trials of sudden inversion for each subject in high-top and low-top shoes.

Subjects:

Twenty male subjects with no history of lower leg injury within the previous 6 months.

Measurements:

We measured ankle inversion using video motion analysis techniques at 60 Hz. A2 x 5 factorial repeated- measures analysis of variance was used to test for significant differences in the amount of inversion, average rate of inversion, and maximum rate of inversion.

Results:

The high-top shoes significantly reduced the amount and rate of inversion. The high-top shoes reduced the amount of inversion by 4.5°, the maximum rate of inversion by 100.1°/s, and the average rate of inversion by 73.0°/s.

Conclusions:

The high-top shoes were more effective in reducing the amount and rate of inversion than the low-top shoes. Depending upon the loading conditions, high-top shoes may help prevent some ankle sprains.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Lentell G, Baas B, Lopez D, McGuire L, Sarrels M, Snyder P. The contributions of proprioceptive deficits, muscle function, and anatomic laxity to functional instability of the ankle. J Orthop Sports Phys Ther. 1995 Apr;21(4):206–215. [PubMed]
  • Balduini FC, Tetzlaff J. Historical perspectives on injuries of the ligaments of the ankle. Clin Sports Med. 1982 Mar;1(1):3–12. [PubMed]
  • Garrick JG. The frequency of injury, mechanism of injury, and epidemiology of ankle sprains. Am J Sports Med. 1977 Nov-Dec;5(6):241–242. [PubMed]
  • Lassiter TE, Jr, Malone TR, Garrett WE., Jr Injury to the lateral ligaments of the ankle. Orthop Clin North Am. 1989 Oct;20(4):629–640. [PubMed]
  • Mack RP. Ankle injuries in athletics. Clin Sports Med. 1982 Mar;1(1):71–84. [PubMed]
  • Konradsen L, Voigt M, Højsgaard C. Ankle inversion injuries. The role of the dynamic defense mechanism. Am J Sports Med. 1997 Jan-Feb;25(1):54–58. [PubMed]
  • Jackson DW, Ashley RL, Powell JW. Ankle sprains in young athletes. Relation of severity and disability. Clin Orthop Relat Res. 1974 Jun;(101):201–215. [PubMed]
  • Podzielny S, Hennig EM. Restriction of foot supination by ankle braces in sudden fall situations. Clin Biomech (Bristol, Avon) 1997 Jun;12(4):253–258. [PubMed]
  • Vaes PH, Duquet W, Casteleyn PP, Handelberg F, Opdecam P. Static and dynamic roentgenographic analysis of ankle stability in braced and nonbraced stable and functionally unstable ankles. Am J Sports Med. 1998 Sep-Oct;26(5):692–702. [PubMed]
  • Shapiro MS, Kabo JM, Mitchell PW, Loren G, Tsenter M. Ankle sprain prophylaxis: an analysis of the stabilizing effects of braces and tape. Am J Sports Med. 1994 Jan-Feb;22(1):78–82. [PubMed]
  • Ottaviani RA, Ashton-Miller JA, Kothari SU, Wojtys EM. Basketball shoe height and the maximal muscular resistance to applied ankle inversion and eversion moments. Am J Sports Med. 1995 Jul-Aug;23(4):418–423. [PubMed]
  • Garrick JG, Requa RK. Role of external support in the prevention of ankle sprains. Med Sci Sports. 1973 Fall;5(3):200–203. [PubMed]
  • Karlsson J, Andreasson GO. The effect of external ankle support in chronic lateral ankle joint instability. An electromyographic study. Am J Sports Med. 1992 May-Jun;20(3):257–261. [PubMed]
  • Ricard MD, Sherwood SM, Schulthies SS, Knight KL. Effects of tape and exercise on dynamic ankle inversion. J Athl Train. 2000 Jan;35(1):31–37. [PMC free article] [PubMed]
  • Pederson TS, Ricard MD, Merrill G, Schulthies SS, Allsen PE. The effects of spatting and ankle taping on inversion before and after exercise. J Athl Train. 1997 Jan;32(1):29–33. [PMC free article] [PubMed]
  • Klein PJ, DeHaven JJ. Accuracy of three-dimensional linear and angular estimates obtained with the Ariel Performance Analysis System. Arch Phys Med Rehabil. 1995 Feb;76(2):183–189. [PubMed]
  • Reber L, Perry J, Pink M. Muscular control of the ankle in running. Am J Sports Med. 1993 Nov-Dec;21(6):805–810. [PubMed]
  • Neptune RR, Wright IC, van den Bogert AJ. Muscle coordination and function during cutting movements. Med Sci Sports Exerc. 1999 Feb;31(2):294–302. [PubMed]
  • Brunt D, Andersen JC, Huntsman B, Reinhert LB, Thorell AC, Sterling JC. Postural responses to lateral perturbation in healthy subjects and ankle sprain patients. Med Sci Sports Exerc. 1992 Feb;24(2):171–176. [PubMed]
  • Sheth P, Yu B, Laskowski ER, An KN. Ankle disk training influences reaction times of selected muscles in a simulated ankle sprain. Am J Sports Med. 1997 Jul-Aug;25(4):538–543. [PubMed]
  • Ebig M, Lephart SM, Burdett RG, Miller MC, Pincivero DM. The effect of sudden inversion stress on EMG activity of the peroneal and tibialis anterior muscles in the chronically unstable ankle. J Orthop Sports Phys Ther. 1997 Aug;26(2):73–77. [PubMed]
  • Tropp H. Pronator muscle weakness in functional instability of the ankle joint. Int J Sports Med. 1986 Oct;7(5):291–294. [PubMed]
  • Wilkerson GB, Pinerola JJ, Caturano RW. Invertor vs. evertor peak torque and power deficiencies associated with lateral ankle ligament injury. J Orthop Sports Phys Ther. 1997 Aug;26(2):78–86. [PubMed]
  • Heitman RJ, Kovaleski J, Gurchiek L. Isokinetic eccentric strength of the ankle evertors after injury. Percept Mot Skills. 1997 Feb;84(1):258–258. [PubMed]
  • Ashton-Miller JA, Ottaviani RA, Hutchinson C, Wojtys EM. What best protects the inverted weightbearing ankle against further inversion? Evertor muscle strength compares favorably with shoe height, athletic tape, and three orthoses. Am J Sports Med. 1996 Nov-Dec;24(6):800–809. [PubMed]
  • Bruns J, Staerk H. Mechanical ankle stabilisation due to the use of orthotic devices and peroneal muscle strength. An experimental investigation. Int J Sports Med. 1992 Nov;13(8):611–615. [PubMed]
  • Rovere GD, Clarke TJ, Yates CS, Burley K. Retrospective comparison of taping and ankle stabilizers in preventing ankle injuries. Am J Sports Med. 1988 May-Jun;16(3):228–233. [PubMed]
  • Johnson GR, Dowson D, Wright V. A biomechanical approach to the design of football boots. J Biomech. 1976;9(9):581–585. [PubMed]
  • Barrett J, Bilisko T. The role of shoes in the prevention of ankle sprains. Sports Med. 1995 Oct;20(4):277–280. [PubMed]
  • Stacoff A, Steger J, Stüssi E, Reinschmidt C. Lateral stability in sideward cutting movements. Med Sci Sports Exerc. 1996 Mar;28(3):350–358. [PubMed]
  • Robinson JR, Frederick EC, Cooper LB. Systematic ankle stabilization and the effect on performance. Med Sci Sports Exerc. 1986 Dec;18(6):625–628. [PubMed]
  • Barnes RA, Smith PD. The role of footwear in minimizing lower limb injury. J Sports Sci. 1994 Aug;12(4):341–353. [PubMed]
  • Konradsen L, Olesen S, Hansen HM. Ankle sensorimotor control and eversion strength after acute ankle inversion injuries. Am J Sports Med. 1998 Jan-Feb;26(1):72–77. [PubMed]
  • Lephart SM, Pincivero DM, Giraldo JL, Fu FH. The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med. 1997 Jan-Feb;25(1):130–137. [PubMed]

Articles from Journal of Athletic Training are provided here courtesy of National Athletic Trainers Association