Search tips
Search criteria 


Logo of jrsocmedLink to Publisher's site
J R Soc Med. 2002; 95(Suppl 41): 22–26.
PMCID: PMC1308633

Mechanisms of antibiotic resistance in Pseudomonas aeruginosa.

Full Text

The Full Text of this article is available as a PDF (182K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis. 1998 Aug;27 (Suppl 1):S93–S99. [PubMed]
  • Henwood CJ, Livermore DM, James D, Warner M. Antimicrobial susceptibility of Pseudomonas aeruginosa: results of a UK survey and evaluation of the British Society for Antimicrobial Chemotherapy disc susceptibility test. J Antimicrob Chemother. 2001 Jun;47(6):789–799. [PubMed]
  • Nichols WW, Dorrington SM, Slack MP, Walmsley HL. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother. 1988 Apr;32(4):518–523. [PMC free article] [PubMed]
  • Ciofu O, Fussing V, Bagge N, Koch C, Høiby N. Characterization of paired mucoid/non-mucoid Pseudomonas aeruginosa isolates from Danish cystic fibrosis patients: antibiotic resistance, beta-lactamase activity and RiboPrinting. J Antimicrob Chemother. 2001 Sep;48(3):391–396. [PubMed]
  • Brinkman FS, Bains M, Hancock RE. The amino terminus of Pseudomonas aeruginosa outer membrane protein OprF forms channels in lipid bilayer membranes: correlation with a three-dimensional model. J Bacteriol. 2000 Sep;182(18):5251–5255. [PMC free article] [PubMed]
  • Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother. 2001 Mar;47(3):247–250. [PubMed]
  • Gilleland LB, Gilleland HE, Gibson JA, Champlin FR. Adaptive resistance to aminoglycoside antibiotics in Pseudomonas aeruginosa. J Med Microbiol. 1989 May;29(1):41–50. [PubMed]
  • Nikaido H. Multiple antibiotic resistance and efflux. Curr Opin Microbiol. 1998 Oct;1(5):516–523. [PubMed]
  • Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol. 2001 Apr;3(2):255–264. [PubMed]
  • Ziha-Zarifi I, Llanes C, Köhler T, Pechere JC, Plesiat P. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother. 1999 Feb;43(2):287–291. [PMC free article] [PubMed]
  • Giwercman B, Lambert PA, Rosdahl VT, Shand GH, Høiby N. Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in-vivo selection of stable partially derepressed beta-lactamase producing strains. J Antimicrob Chemother. 1990 Aug;26(2):247–259. [PubMed]
  • Giwercman B, Meyer C, Lambert PA, Reinert C, Høiby N. High-level beta-lactamase activity in sputum samples from cystic fibrosis patients during antipseudomonal treatment. Antimicrob Agents Chemother. 1992 Jan;36(1):71–76. [PMC free article] [PubMed]
  • Vahaboglu H, Coskunkan F, Tansel O, Ozturk R, Sahin N, Koksal I, Kocazeybek B, Tatman-Otkun M, Leblebicioglu H, Ozinel MA, et al. Clinical importance of extended-spectrum beta-lactamase (PER-1-type)-producing Acinetobacter spp. and Pseudomonas aeruginosa strains. J Med Microbiol. 2001 Jul;50(7):642–645. [PubMed]
  • Maiti SN, Phillips OA, Micetich RG, Livermore DM. Beta-lactamase inhibitors: agents to overcome bacterial resistance. Curr Med Chem. 1998 Dec;5(6):441–456. [PubMed]
  • Chaïbi EB, Sirot D, Paul G, Labia R. Inhibitor-resistant TEM beta-lactamases: phenotypic, genetic and biochemical characteristics. J Antimicrob Chemother. 1999 Apr;43(4):447–458. [PubMed]
  • Woodford N, Palepou MF, Babini GS, Bates J, Livermore DM. Carbapenemase-producing Pseudomonas aeruginosa in UK. Lancet. 1998 Aug 15;352(9127):546–547. [PubMed]
  • MacLeod DL, Nelson LE, Shawar RM, Lin BB, Lockwood LG, Dirk JE, Miller GH, Burns JL, Garber RL. Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J Infect Dis. 2000 Mar;181(3):1180–1184. [PubMed]
  • Akasaka T, Tanaka M, Yamaguchi A, Sato K. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrob Agents Chemother. 2001 Aug;45(8):2263–2268. [PMC free article] [PubMed]
  • Srikumar R, Tsang E, Poole K. Contribution of the MexAB-OprM multidrug efflux system to the beta-lactam resistance of penicillin-binding protein and beta-lactamase-derepressed mutants of Pseudomonas aeruginosa. J Antimicrob Chemother. 1999 Oct;44(4):537–540. [PubMed]
  • Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001 Jul 14;358(9276):135–138. [PubMed]
  • Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001 Jan;9(1):34–39. [PubMed]
  • Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Høiby N, Givskov M, Molin S, Eberl L. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology. 2001 Dec;147(Pt 12):3249–3262. [PubMed]

Articles from Journal of the Royal Society of Medicine are provided here courtesy of Royal Society of Medicine Press