PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of taosLink to Publisher's site
 
Trans Am Ophthalmol Soc. 1998; 96: 881–923.
PMCID: PMC1298416
Acquired mitochondrial impairment as a cause of optic nerve disease.
A Sadun
Doheny Eye Institute, Department of Ophthalmology, University of Southern California School of Medicine, Los Angeles, USA.
Abstract
BACKGROUND: Blindness from an optic neuropathy recently occurred as an epidemic affecting 50,000 patients in Cuba (CEON) and had clinical features reminiscent of both tobacco-alcohol amblyopia (TAA) and Leber's hereditary optic neuropathy (Leber's; LHON). Selective damage to the papillomacular bundle was characteristic, and many patients also developed a peripheral neuropathy. Identified risk factors included vitamin deficiencies as well as exposure to methanol and cyanide. In all 3 syndromes, there is evidence that singular or combined insults to mitochondrial oxidative phosphorylation are associated with a clinically characteristic optic neuropathy. PURPOSE: First, to test the hypothesis that a common pathophysiologic mechanism involving impairment of mitochondria function and, consequently, axonal transport underlies both genetic optic nerve diseases such as Leber's and acquired toxic and nutritional deficiency optic neuropathies. According to this hypothesis, ATP depletion below a certain threshold leads to a blockage of orthograde axonal transport of mitochondria, which, in turn, leads to total ATP depletion and subsequent cell death. Second, to address several related questions, including (1) How does impaired energy production lead to optic neuropathy, particularly since it seems to relatively spare other metabolically active tissues, such as liver and heart? (2) Within the nervous system, why is the optic nerve, and most particularly the papillomacular bundle, so highly sensitive? Although there have been previous publications on the clinical features of the Cuban epidemic of blindness, the present hypothesis and the subsequent questions have not been previously addressed. METHODS: Patients in Cuba with epidemic optic neuropathy were personally evaluated through a comprehensive neuro-ophthalmologic examination. In addition, serum, lymphocytes for DNA analysis, cerebrospinal fluid (CSF), sural nerves, and eyes with attached optic nerves were obtained from Cuban patients, as well as from Leber's patients, for study. Finally, we developed an animal model to match the low serum folic acid and high serum formate levels found in the CEON patients, by administering to rats low doses of methanol after several months of a folic acid-deficient diet. Optic nerves and other tissues obtained from these rats were analyzed and compared with those from the Cuban patients. RESULTS: Patients from the Cuban epidemic of optic neuropathy with clinical evidence of a selective loss of the papillomacular bundle did much better once their nutritional status was corrected and exposure to toxins ceased. Patients with CEON often demonstrated low levels of folic acid and high levels of formate in their blood. Histopathologic studies demonstrated losses of the longest fibers (in the sural nerve) and those of smallest caliber (papillomacular bundle) in the optic nerve, with intra-axonal accumulations just anterior to the lamina cribrosa. Our animal model duplicated the serologic changes (low folic acid, high formate) as well as these histopathologic changes. Furthermore, ultrastructural examination of rat tissues demonstrated mitochondrial changes that further matched those seen on ultrastructural examination of tissues from patients with Leber's. CONCLUSION: Mitochondria can be impaired either genetically (as in Leber's) or through acquired insults (such as nutritional or toxic factors). Either may challenge energy production in all cells of the body. While this challenge may be met through certain compensatory mechanisms (such as in the size, shape, or number of the mitochondria), there exists in neurons a threshold which, once passed, leads to catastrophic changes. This threshold may be that point at which mitochondrial derangement leads to such ATP depletion that axonal transport is compromised, and decreased mitochondrial transport results in even further ATP depletion. Neurons are singularly dependent on the axonal transport of mitochondria. (
Full text
Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (6.2M), or click on a page image below to browse page by page.
Articles from Transactions of the American Ophthalmological Society are provided here courtesy of
American Ophthalmological Society