Search tips
Search criteria 


Logo of jmedgeneJournal of Medical GeneticsVisit this articleSubmit a manuscriptReceive email alertsContact usBMJ
J Med Genet. 1994 November; 31(11): 872–874.
PMCID: PMC1016662

Trinucleotide repeat length and progression of illness in Huntington's disease.


The genetic defect causing Huntington's disease (HD) has been identified as an unstable expansion of a trinucleotide (CAG) repeat sequence within the coding region of the IT15 gene on chromosome 4. In 50 patients with manifest HD who were evaluated prospectively and uniformly, we examined the relationship between the extent of the DNA expansion and the rate of illness progression. Although the length of CAG repeats showed a strong inverse correlation with the age at onset of HD, there was no such relationship between the number of CAG repeats and the rate of clinical decline. These findings suggest that the CAG repeat length may influence or trigger the onset of HD, but other genetic, neurobiological, or environmental factors contribute to the progression of illness and the underlying pace of neuronal degeneration.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (435K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M, et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet. 1993 Aug;4(4):387–392. [PubMed]
  • Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, Shaw DJ. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet. 1993 Aug;4(4):393–397. [PubMed]
  • Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet. 1993 Aug;4(4):398–403. [PubMed]
  • Stine OC, Pleasant N, Franz ML, Abbott MH, Folstein SE, Ross CA. Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT-15. Hum Mol Genet. 1993 Oct;2(10):1547–1549. [PubMed]
  • Craufurd D, Dodge A. Mutation size and age at onset in Huntington's disease. J Med Genet. 1993 Dec;30(12):1008–1011. [PMC free article] [PubMed]
  • Simpson SA, Davidson MJ, Barron LH. Huntington's disease in Grampian region: correlation of the CAG repeat number and the age of onset of the disease. J Med Genet. 1993 Dec;30(12):1014–1017. [PMC free article] [PubMed]
  • MacMillan JC, Snell RG, Tyler A, Houlihan GD, Fenton I, Cheadle JP, Lazarou LP, Shaw DJ, Harper PS. Molecular analysis and clinical correlations of the Huntington's disease mutation. Lancet. 1993 Oct 16;342(8877):954–958. [PubMed]
  • Roos RA, Hermans J, Vegter-van der Vlis M, van Ommen GJ, Bruyn GW. Duration of illness in Huntington's disease is not related to age at onset. J Neurol Neurosurg Psychiatry. 1993 Jan;56(1):98–100. [PMC free article] [PubMed]
  • Young AB, Shoulson I, Penney JB, Starosta-Rubinstein S, Gomez F, Travers H, Ramos-Arroyo MA, Snodgrass SR, Bonilla E, Moreno H, et al. Huntington's disease in Venezuela: neurologic features and functional decline. Neurology. 1986 Feb;36(2):244–249. [PubMed]
  • Shoulson I, Odoroff C, Oakes D, Behr J, Goldblatt D, Caine E, Kennedy J, Miller C, Bamford K, Rubin A, et al. A controlled clinical trial of baclofen as protective therapy in early Huntington's disease. Ann Neurol. 1989 Mar;25(3):252–259. [PubMed]
  • Warner JP, Barron LH, Brock DJ. A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington's disease chromosomes. Mol Cell Probes. 1993 Jun;7(3):235–239. [PubMed]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group