4-Meth­oxy-N′-(2-methoxy­naphthyl­idene)benzohydrazide]]>Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article ]]>
Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1831.
Published online 2008 August 23. doi:  10.1107/S1600536808026974
PMCID: PMC2960693

4-Meth­oxy-N′-(2-methoxy­naphthyl­idene)benzohydrazide

Abstract

The mol­ecule of the title Schiff base compound, C20H18N2O3, prepared by the reaction of 2-meth­oxy-1-naphthyl­aldehyde and 4-methoxy­benzohydrazide, exists in a trans configuration with respect to the imine group. The naphthyl ring system makes a dihedral angle of 71.4 (2)° with the mean plane of the benzene ring. In the crystal structure, mol­ecules are linked into one-dimensional chains parallel to the c axis by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For the biological properties of hydrazone derivatives, see: Bedia et al. (2006 [triangle]); Rollas et al. (2002 [triangle]); Fun et al. (2008 [triangle]). For our previous reports of hydrazones, see: Qiu, Fang et al. (2006 [triangle]); Qiu, Luo et al. (2006a [triangle],b [triangle]); Qiu, Xu et al. (2006 [triangle]). For related structures, see: Singh et al. (2007 [triangle]); Narayana et al. (2007 [triangle]); Cui et al. (2007 [triangle]); Diao et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1831-scheme1.jpg

Experimental

Crystal data

  • C20H18N2O3
  • M r = 334.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1831-efi1.jpg
  • a = 11.675 (3) Å
  • b = 17.937 (4) Å
  • c = 8.508 (3) Å
  • β = 110.288 (3)°
  • V = 1671.2 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS;Sheldrick, 1996 [triangle]) T min = 0.982, T max = 0.984
  • 9333 measured reflections
  • 3445 independent reflections
  • 1657 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.148
  • S = 0.97
  • 3445 reflections
  • 231 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Acknowledgments

The author acknowledges the Education Office of Anhui Province (project No. KJ2008B178).

supplementary crystallographic information

Comment

Hydrazone compounds, which are derived from the reaction of aldehydes with hydrazides, have been widely studied due to their excellent biological properties (Bedia et al., 2006; Rollas et al., 2002; Fun et al., 2008). Recently, we have reported a few Schiff hydrazone compounds (Qiu, Fang et al., 2006; Qiu, Luo et al., 2006a, 2006b; Qiu, Xu et al., 2006), we report herein the crystal structure of the title new compound, (I).

The molecule of (I), Fig. 1, exists in a trans configuration with respect to the methylidene group. The naphthyl ring makes a dihedral angle of 71.4 (2)° with the mean plane of the benzene ring. The bond lengths and angles in (I) are found to have normal values and comparable to the values in similar compounds (Singh et al., 2007; Narayana et al., 2007; Cui et al., 2007; Diao et al., 2008).

In the crystal structure, molecules are linked into one-dimensional chains parallel to the c axis by intermolecular N—H···O hydrogen bonds (Table 1 and Fig. 2).

Experimental

The title compound was prepared by the Schiff base condensation of equimolar (0.5 mmol each) 2-methoxy-1-naphthylaldehyde and 4-methoxybenzohydrazide in methanol (20 ml). Excess methanol was removed from the reaction mixture with distillation. The colourless solid was filtered and dried in air. Colourless block-shaped crystals suitable for X-ray diffraction were obtained from a methanol solution.

Refinement

The imino H atom was located in a difference map and refined with N—H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically [C—H = 0.93–0.96 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). Rigid rotating group models were used for the methyl groups.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of (I), viewed along the b axis.

Crystal data

C20H18N2O3F000 = 704
Mr = 334.36Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1254 reflections
a = 11.675 (3) Åθ = 2.5–24.5º
b = 17.937 (4) ŵ = 0.09 mm1
c = 8.508 (3) ÅT = 298 (2) K
β = 110.288 (3)ºBlock, colourless
V = 1671.2 (8) Å30.20 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3445 independent reflections
Radiation source: fine-focus sealed tube1657 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.048
T = 298(2) Kθmax = 26.6º
ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS;Sheldrick, 1996)h = −14→14
Tmin = 0.982, Tmax = 0.984k = −22→18
9333 measured reflectionsl = −10→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148  w = 1/[σ2(Fo2) + (0.0631P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
3445 reflectionsΔρmax = 0.17 e Å3
231 parametersΔρmin = −0.18 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.02930 (16)0.01580 (9)0.8049 (2)0.0725 (6)
O20.25127 (15)0.32586 (9)0.7183 (2)0.0629 (5)
O30.60192 (18)0.45464 (11)1.4125 (2)0.0838 (6)
N10.10006 (17)0.22371 (11)0.7604 (3)0.0547 (6)
N20.18996 (18)0.25413 (11)0.8945 (3)0.0535 (6)
C1−0.0487 (2)0.12593 (13)0.6609 (3)0.0492 (6)
C2−0.0564 (2)0.04936 (14)0.6724 (3)0.0559 (7)
C3−0.1458 (3)0.00788 (16)0.5506 (4)0.0722 (8)
H3−0.1477−0.04380.55910.087*
C4−0.2290 (3)0.04341 (17)0.4209 (4)0.0762 (9)
H4−0.28780.01540.34070.091*
C5−0.2297 (2)0.12115 (16)0.4033 (3)0.0597 (7)
C6−0.3197 (3)0.15768 (19)0.2698 (4)0.0765 (9)
H6−0.37860.12950.18990.092*
C7−0.3220 (3)0.2322 (2)0.2562 (4)0.0818 (9)
H7−0.38270.25530.16840.098*
C8−0.2336 (3)0.27484 (17)0.3731 (4)0.0790 (9)
H8−0.23560.32650.36300.095*
C9−0.1444 (2)0.24203 (15)0.5021 (4)0.0662 (8)
H9−0.08590.27180.57820.079*
C10−0.1381 (2)0.16348 (13)0.5239 (3)0.0504 (6)
C110.0218 (3)−0.06329 (14)0.8242 (4)0.0882 (10)
H11A−0.0584−0.07610.82270.132*
H11B0.0813−0.07850.92900.132*
H11C0.0374−0.08830.73390.132*
C120.0490 (2)0.16441 (13)0.7918 (3)0.0542 (7)
H120.07510.14570.90050.065*
C130.2622 (2)0.30763 (13)0.8640 (4)0.0504 (6)
C140.3530 (2)0.34273 (12)1.0105 (3)0.0486 (6)
C150.3425 (2)0.34574 (13)1.1687 (3)0.0562 (7)
H150.27680.32251.18660.067*
C160.4276 (3)0.38248 (15)1.2979 (3)0.0658 (8)
H160.41940.38301.40280.079*
C170.5237 (2)0.41823 (13)1.2766 (4)0.0612 (8)
C180.5369 (2)0.41555 (15)1.1216 (4)0.0670 (8)
H180.60280.43901.10500.080*
C190.4517 (2)0.37779 (14)0.9909 (3)0.0593 (7)
H190.46170.37610.88720.071*
C200.6915 (3)0.50102 (18)1.3936 (4)0.1010 (12)
H20A0.74040.47361.34330.151*
H20B0.74230.51921.50140.151*
H20C0.65360.54241.32300.151*
H20.200 (2)0.2348 (14)0.9956 (19)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0747 (13)0.0456 (11)0.0843 (15)−0.0046 (9)0.0111 (11)0.0043 (10)
O20.0651 (12)0.0541 (11)0.0604 (13)−0.0120 (8)0.0104 (10)0.0021 (9)
O30.0788 (14)0.0771 (13)0.0713 (14)−0.0238 (11)−0.0047 (11)−0.0070 (11)
N10.0450 (12)0.0532 (13)0.0577 (14)−0.0072 (10)0.0072 (11)−0.0104 (11)
N20.0515 (12)0.0488 (13)0.0524 (14)−0.0103 (10)0.0083 (11)−0.0016 (11)
C10.0468 (15)0.0476 (15)0.0547 (17)−0.0081 (12)0.0193 (13)−0.0066 (13)
C20.0513 (16)0.0502 (16)0.0646 (19)−0.0060 (13)0.0181 (15)−0.0040 (14)
C30.0683 (19)0.0537 (17)0.089 (2)−0.0161 (15)0.0197 (18)−0.0126 (16)
C40.068 (2)0.069 (2)0.081 (2)−0.0206 (16)0.0136 (18)−0.0232 (17)
C50.0531 (17)0.0646 (18)0.0578 (18)−0.0094 (14)0.0146 (14)−0.0110 (15)
C60.0603 (19)0.094 (3)0.063 (2)−0.0087 (17)0.0059 (15)−0.0136 (18)
C70.070 (2)0.092 (3)0.069 (2)0.0049 (18)0.0060 (17)0.0046 (19)
C80.0643 (19)0.0676 (19)0.090 (2)0.0006 (16)0.0075 (18)0.0054 (17)
C90.0542 (17)0.0577 (18)0.075 (2)−0.0040 (13)0.0078 (15)−0.0026 (15)
C100.0438 (14)0.0504 (15)0.0572 (17)−0.0056 (12)0.0177 (13)−0.0069 (13)
C110.103 (3)0.0471 (18)0.109 (3)−0.0049 (16)0.030 (2)0.0073 (17)
C120.0488 (15)0.0477 (15)0.0603 (17)−0.0032 (12)0.0115 (13)−0.0016 (13)
C130.0508 (15)0.0391 (14)0.0590 (18)0.0021 (12)0.0160 (14)0.0056 (13)
C140.0418 (14)0.0382 (13)0.0590 (18)−0.0006 (11)0.0090 (13)0.0026 (12)
C150.0526 (15)0.0515 (16)0.0634 (19)−0.0078 (12)0.0188 (14)0.0006 (14)
C160.0723 (19)0.0597 (17)0.0570 (18)−0.0077 (15)0.0117 (16)−0.0060 (14)
C170.0516 (17)0.0424 (15)0.073 (2)−0.0052 (12)0.0000 (15)0.0074 (14)
C180.0535 (17)0.0699 (19)0.068 (2)−0.0162 (14)0.0087 (15)0.0117 (16)
C190.0534 (16)0.0616 (16)0.0616 (18)−0.0061 (13)0.0181 (14)0.0078 (14)
C200.085 (2)0.083 (2)0.104 (3)−0.0336 (19)−0.006 (2)−0.001 (2)

Geometric parameters (Å, °)

O1—C21.361 (3)C8—C91.358 (4)
O1—C111.434 (3)C8—H80.9300
O2—C131.245 (3)C9—C101.420 (3)
O3—C171.366 (3)C9—H90.9300
O3—C201.388 (3)C11—H11A0.9600
N1—C121.292 (3)C11—H11B0.9600
N1—N21.368 (3)C11—H11C0.9600
N2—C131.361 (3)C12—H120.9300
N2—H20.895 (10)C13—C141.470 (3)
C1—C21.382 (3)C14—C191.372 (3)
C1—C101.434 (3)C14—C151.395 (3)
C1—C121.462 (3)C15—C161.368 (3)
C2—C31.402 (4)C15—H150.9300
C3—C41.351 (4)C16—C171.358 (3)
C3—H30.9300C16—H160.9300
C4—C51.402 (4)C17—C181.381 (4)
C4—H40.9300C18—C191.384 (3)
C5—C61.413 (4)C18—H180.9300
C5—C101.419 (3)C19—H190.9300
C6—C71.341 (4)C20—H20A0.9600
C6—H60.9300C20—H20B0.9600
C7—C81.388 (4)C20—H20C0.9600
C7—H70.9300
C2—O1—C11118.4 (2)O1—C11—H11A109.5
C17—O3—C20119.9 (3)O1—C11—H11B109.5
C12—N1—N2115.6 (2)H11A—C11—H11B109.5
C13—N2—N1118.0 (2)O1—C11—H11C109.5
C13—N2—H2124.7 (18)H11A—C11—H11C109.5
N1—N2—H2117.2 (18)H11B—C11—H11C109.5
C2—C1—C10118.5 (2)N1—C12—C1121.7 (2)
C2—C1—C12117.9 (2)N1—C12—H12119.2
C10—C1—C12123.6 (2)C1—C12—H12119.2
O1—C2—C1116.8 (2)O2—C13—N2121.3 (2)
O1—C2—C3121.5 (2)O2—C13—C14121.8 (2)
C1—C2—C3121.7 (3)N2—C13—C14116.9 (2)
C4—C3—C2119.6 (3)C19—C14—C15117.3 (2)
C4—C3—H3120.2C19—C14—C13118.9 (2)
C2—C3—H3120.2C15—C14—C13123.8 (2)
C3—C4—C5122.2 (3)C16—C15—C14120.7 (2)
C3—C4—H4118.9C16—C15—H15119.6
C5—C4—H4118.9C14—C15—H15119.6
C4—C5—C6121.5 (3)C17—C16—C15121.6 (3)
C4—C5—C10118.7 (3)C17—C16—H16119.2
C6—C5—C10119.8 (3)C15—C16—H16119.2
C7—C6—C5121.3 (3)C16—C17—O3117.0 (3)
C7—C6—H6119.4C16—C17—C18118.8 (3)
C5—C6—H6119.4O3—C17—C18124.1 (3)
C6—C7—C8120.0 (3)C17—C18—C19119.8 (3)
C6—C7—H7120.0C17—C18—H18120.1
C8—C7—H7120.0C19—C18—H18120.1
C9—C8—C7120.8 (3)C14—C19—C18121.7 (3)
C9—C8—H8119.6C14—C19—H19119.1
C7—C8—H8119.6C18—C19—H19119.1
C8—C9—C10121.8 (3)O3—C20—H20A109.5
C8—C9—H9119.1O3—C20—H20B109.5
C10—C9—H9119.1H20A—C20—H20B109.5
C5—C10—C9116.4 (2)O3—C20—H20C109.5
C5—C10—C1119.3 (2)H20A—C20—H20C109.5
C9—C10—C1124.2 (2)H20B—C20—H20C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.895 (10)2.084 (12)2.965 (3)167 (2)

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2188).

References

  • Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem.41, 1253–1261. [PubMed]
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cui, J., Yin, H. & Qiao, Y. (2007). Acta Cryst. E63, o3548.
  • Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008). Acta Cryst. E64, o101. [PMC free article] [PubMed]
  • Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. [PMC free article] [PubMed]
  • Narayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.
  • Qiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685–o2686.
  • Qiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006a). Acta Cryst. E62, o3531–o3532.
  • Qiu, X.-Y., Luo, Q.-Y., Yang, S.-L. & Liu, W.-S. (2006b). Acta Cryst. E62, o4291–o4292.
  • Qiu, X.-Y., Xu, H.-J., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2304–o2305.
  • Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, N. K., Singh, M., Srivastava, A. K., Shrivastav, A. & Sharma, R. K. (2007). Acta Cryst. E63, o4895.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography
]]>
http://www.ncbi.nlm.nih.gov/pubmed/